INTERGRANULAR FRACTURE AT ELEVATED TEMPERATURE*
RISHI RAJt{ and M. F. ASHBY:

The kinetic problem of intergranular fracture at elevated temperatures by the nucleation and growth
of voids in the grain boundary is analysed in detail. Diffusional transport accounts for the void growth-
rate in the analysis, and the nucleation-rate is obtained by using the concepts of classical nucieation
theory. The two are compounded to calculate the time-to-fracture. The infiuence of grain size, strain-
rate, temperature, second phase particles and interface energies is taken into account. Particular atten-
tion is given to the presence of mclusions in the boundary; the role of the stress concentration at the
interface between the inclusion and the matrix, and the energy of this interface is investigated.

RUPTURE INTERGRANULAIRE AUX TEMPERATURES ELEVEES

On analyse en détail le probléme cinétique de la rupture intergranulaire aux températures élevées
par la germination et la croissance de cavités aux joints de grains. Dans cette analyse, le transport de
matiere par diffusion rend compte de la vitesse de croissance des cavités, et I'on obtient la vitesse de
germination en utilisant les concepts de la théorie classigue de la germination. On combine croissance et
germination pour calculer le temps jusqu’a rupture. On tient compte de I'influence de la taille des grains,
de la vitesse de déformation, de la température, de particules d’une seconde phase et des énergies d’inter-
face. On insiste en particulier sur la présence d'inclusions dans les jomts. On étudie le réle de la con-
centration de contraintes & I'interface inclusion-matrice, et de 1'énergie de cet interface.

INTERGRANULARER BRUCH BEI HOHEREN TEMPERATUREN

Das Kinetikproblem des intergranularen Bruchs bei hoheren Temperaturen durch Keimbildung und
Wachstum von Hohlrdumen in der Korngrenze wird ausfithrlich untersucht. Die Analyse zeigt, daB Diffu-
sionstransport zum Wachstum der Hohlraume fithrt und da die Keimbildungsgeschwindigkeit mit dem
Konzept der klassischen Keimbildungstheorie gewonnen werden kann. Aus beiden wird die Zeit bis zum

Bruch berechnet.

Der EinfluB von KorngroBe. Abgleitgeschwindigkeit. Temperatur, Teilchen der
zweiten Phase und Grenzfiichenenergien wird beriicksichtigt.

Insbesondere wird die Gegenwart von

Einschliissen in der Korngrenze betrachtet. Die Rolle der Spannungskonzentration an der Grenzflache
zwischen Einschiuf und Matrix und die Energie dieser Grenzflache werden untersucht.

1. INTRODUCTION

Fracture of polveryvstalline solids under creep con-
ditions can be caused by the growth and coalescence
of voids on the grain boundaries. Under the right con-
ditions, the voids grow by the diffusive motion of
vacancies to them.) The same fracture mechanism
has been held responsible for the minimum in time-to-
fracture, or in the ductility, sometimes observed when
polverystals are pulled in tension at a constantrate. 23
The diffusional growth of voids has been analvsed
by Speight and Harris and earlier by Hull and
Rimmer,'® and is (at least partly) explained. Their
nucleation, on the other hand, is still not completely
understood: measurements of their nucleation-rate,
for instance, are inconclusive.1-% It has been suggested
that stress concentrations at inclusions and triple
points can lead to void nucleation.!”

An analysis is presented here which envelopes many
of the aspects of intergranular fracture mentioned
above and which can be used to calculate the time to
fracture for a given grain size, strain-rate, temperature,
size and density of second phase particles in the bound-
ary, and the various interface energies. It uses a unified
approach whereby different void configurations (at
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least five are possible) can be dealt with simultane-
ously. We first calculate the time-to-fracture when a
fixed number of pre-existing voids is present. Next
we apply classical nucleation theory to the nucleation-
rate of the voids on non-sliding boundaries and on
boundaries which slide. The growth-rate and the
nucleation-rate are then compounded, using a numeri-
cal method. to calculate the time-to-fracture.

Sliding at a grain boundary which contains in-
clusions can concentrate the tensile stress at the inter-
face at which the inclusion and the matrix meet. We
calculate this interface stress (using an upper bound
criterion) and the new nucleation rate and time-to-
rupture. The combination of the stress concentration
and the high interface energy at an inclusion makes
it a probable site for void nucleation. The calculations
lead to the conclusion that inclusions should be largely
responsible for intergranular fracture at elevated tem-
peratures in polyerystals, and predict the influence of
grain size, inclusion size and density, and strain-rate
on the duectility of polycrystals.

The notation used in this paper is summarized in
Table 1.

2. VOID GEOMETRIES
Voids formed at the grain boundaries can have differ-
ent shapes depending on whether they are formed at
two-grain junctions, three-grain junctions, four-grain
junctions or at the interface of inclusions present in
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Fic. 1. Void geometries in inclusion free grain bound-
aries.

the grain boundaries. All voids, however, have two
features in common: the free surfaces of the voids
are spherical segments (provided that surface diffusion
is rapid enough to maintain the uniform curvaturet
as the void grows) and the angles formed between the
void and the interfaces which contain it must be such
as to satisfy equilibrium between the surface tension
forees in question. The voids considered in this paper
fall into two categories: voids formed in inclusion-
free grain boundaries; and voids formed in boundaries
which contain inclusions.

2.1 Voids in inclusion-free boundaries

Figure 1 shows the shapes of voids at two-grain junc-
tions, three-grain junctions and four-grain junctions.
The geometry of these voids is described by the radius
of the void surface, r, and the angle « formed at the
junction of the void and the grain boundary. This
angle is dictated by equilibrium between surface
tension forces at the junction, so that:

o = cos™?! (2’—‘3) (1)
2y

where y5 is the energy (per unit area) of the grain

boundary and y is the energy of the free surface of the

void. (Typically for clean surfaces in pure metals,

yp ~ y/2 and a &~ 75°.)

+ This is not always true. Under conditions that cause a
void to grow rapidly, matter is removed from its perifery by
grain boundary diffusion faster than surface diffusion can
redistribute matter on the void surface. It will then become
increasingly penny-shaped, and spread in the boundary plane
faster than calculated here. For simplicity we neglect this
effect.
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Three geometric properties of the void—its volume
V, its free surface area § and the grain boundary area
B that it replaces—can be expressed as functions of r
and xz. In general:

V = r*Fp(a) (2a)
S = r*Fy(a) (2b)
B = r*Fg(a). (2¢)

The functions of « depend on the void type. They
have been calculated!® and are quoted in Appendix I
for three- and four-grain junctions. For two-grain
junctions they are:

Fp(z) = %—;—' (2 — 3 cosa + cos® x) (3a)
Fy(x) = 4m(1 — cos a) (3b)
Fg(ax) = wsin® a. (3c)

Note that as « increases to m/2, equations (2 and 3)
give the properties of a sphere. Remembering that
the radius of the circle of intersection of the void with
the boundary is rp = r sin « it can be seen that, as «
decreases to zero, equations (2 and 3) give the prop-
erties of a penny-shaped disc.

2.2 Voids formed at inclusions

Figure 2 shows that two types of voids can form at
inclusions. One lies completely on the inclusion.
matrix interface (Type A), and the other extends into
the grain boundary (Type B). Two new angles, 3 and

-voIo
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Fie. 2. Two types of voids which can form at inclusions
present in a grain bondary.
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i are needed to describe them. They are shown in
Fig. 2 and satisfy the following interface energy rela-
tionships:

ﬁ —_ cos—l {yIB —_ 7’1} (4)
))
and
= cos™! {—@;}, (5)
K 2y1p

where y is the energy of the inclusion free surface and
v1p is the energy of the inclusion-matrix interface.

The geometrical properties of the Type A void are
given to a good approximation (provided the void is
small compared with the inclusion) by equation (2) and
the following angle funections:

Fp. = -;—T (2 — 3 cos B + cos® ) (6a)
Fg=2n(1l — cos ) (6b)
Fgp = =sin®B. (6c)

The properties of the Type B voids are more difficult
to calculate. The exact calculation is given in Ap-
pendix I but approximately (to within a factor of two)
the volume is given by:

V‘ ;ra 4._{: — 3 cos (a_—i—_ﬁ_—_-ﬁ)
3 2
-+ cog® (i-j_—’g-:ﬁ)] (7

The reason for this approximation is evident by in-
spection of Fig. 2

In the calculations to foliow, we shall use the ex-
pressions in equations (1-7) and the equations in Ap-
pendix 1.

3. TIME TO FRACTURE: FIXED NUMBER
OF NUCLEIl

In this section we assume that a fixed number of
void nuclei exist, and can grow, as soon as a stress is
applied to the hot specimen; and we calculate the
time-to-rupture. For this purpose we consider a
periodic array of voids in a grain boundary across
which a tensile stress ¢, is applied. Voids will grow
in volume by the diffusion of matter from the void
surface into the grain boundary adjacent to the voids
as shown in Fig. 3.

Diffusion occurs through the boundary and through
the lattice. The steadv.state growth of voids by
boundary diffusion has been calculated by Hull and
Rimmer!® and Speight and Harris.'¥) Though these
solutions are a tolerable approximation for a wide
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Fi1c. 3. A periodic array of voids in a grain boundary. A
tensile stress of g, is applied normal to the boundary.

range of void sizes and stresses, they are not strictlv
correct because they used wrong boundary conditions
in solving the diffusion equation.

A calculation that avoids this error is given in
Appendix II. The rate-of-growth of the volume of
voids which project a circular cross-section of radius
7g in the grain boundary and are spaced an average
distance 2! apart, when growth is by boundary diffu-
sion, is:

(Fh-2mosr (- %)

l 3 TBz Tp
log, {—) — - 4+ —=~(1 —-=
& (rB) 1T ( 412)
where 7 is the radius of curvature of the void surface,
Q is the atomic volume and D4 is the boundary diffu-
sion coefficient times the boundary thickness. The

equivalent solution for the volume diffusion case is
obtained by making the usual approximation:'®

(d_V) (dI) 21D, (@)
dt Jvol. aitt. dt/e wéDB

This contribution is added to that given by equation
(8) to give the total growth-rate of a void. In practice
it is seldom the dominant contribution.

To calculate the time to fracture we define the area-
fraction of voids in a grain boundary, 4(t), as:

. 2
A(ty = B

s (10)
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It is a measure of the damage to the material; that is,
extent to which separation has progressed.

Rupture takes place after an elapsed time ¢, when
A reaches a final value 4,, which we will take to be
0.5. Inany real material, holes will nucleate and grow,
slowly at first, and then more rapidly as the local load-
bearing cross-section is eaten away and the local stress
rises. The final fracture must involve the tearing or
rapid plastic deformation of the ligaments between
the voids; but because hole growth in this final phase
is rapid by any mechanism, it occupies only a small
part of the life, and we ignore it in calculating ¢,.

The time to fracture, ¢,, has been derived in Ap-
pendix II:

L _3m BT 1

T

FV(a) f‘lmax d4

11
32 QD 50p" FYH) Jama FA)

where p is the number of voids per unit area of the
boundary.

The integral in equation (11) is defined by equation
(A2.12). Its value is 0.06 as shown in Fig. A2.1 and
as explained in Appendix II. The value of the integral
is insensitive to 4 ,, when 4, > 0.1 and changes
very rapidly for 4, < 0.1, implying that most of ¢,
is spent in the early stages of void growth.

The dependence of ¢, on the shape functions F/F%*
is shown in Fig. 4. It increases almost linearly with «.
Note that thin penny-shaped voids can be approxi-
mated by a small « while nearly spherical voids by a
large x.

For boundary diffusion ¢, varies as 1/p%2. If the
voids were growing by volume diffusion then, in view
of equation (9), ¢, would vary as 1/p. The time to
fracture, normalized with respect to the stress, is
plotted in Fig. 5. (The physical constants for copper
used in the calculation are given in the Nomenclature :
o was taken to be 7/3.) Note that volume diffusion
dominates only when void densities are less than
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F1e. 4. Dependence of time-to-fracture upon « for two
grain junctions for a fixed number of nuclei.
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108 voids/em?. Typically, at a stress g, = 10~ G, at
700°C and for a void density of 10° voids/cm? fracture
would occur in one day.

4. NUCLEATION OF VOIDS

In contrast to the last section, we here assume that
no voids exist in the virgin specimen, but that they
must first be nucleated before they can grow. For
this purpose we consider the nucleation of a void in a
grain boundary across which a tensile stress ¢, acts.
The factors contributing to the change in free energy
of the system as a result of forming one void nucleus
are: (a)the work done by the system on its surround-
ings, (b) change in the interface area—and thus
energy—within the system and (¢) change in the
stored elastic energy in the system. Since the term (a)
is of order o, and the term (c) is of order ¢,2/2E, and
since £ > ¢,, term (¢) may be neglected in comparison
with (a). Recalling equations (2) we get the change in
free energy:

AG = —r°F (a)o, + rl[yFg(x) — ygFg(x)]. (12)

The critical radius, r,, at which AG reaches a maxi-
mum, and the magnitude of this maximum, AG,, can
be calculated using equations (12, 2 and 3) and the
equations in Appendix I. The result is a general one
and is applicable to all types of void configurations:
r,==L (13)

n

L3
2

Q

and

A
AG, = Eul@oy (14)

-
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Alternatively AG, can be written as

AG — (Volume of the void of critical size) X ¢,
¢ 3 .

-

(15)

If pax 18 the maximum number of potential nuclea-
tion sites in the grain boundary per unit area, then the
number of critical nuclel per unit area is

. { AG,
Pe = Pmax €XP ("" ﬁ_)

The number of supercritical nuclei formed per
second is p, times the time-dependent probability,
py. of adding one vacancy to the critical nucleus. p,
can be derived from the jumping frequency of a
vacancy, which is related to the boundary self diffusion
coefficient, and from the probability of finding a
vacancy at the perimeter of the nucleus of critical
size 0¥

(16)

4my Dgd
P = ;;5 R exp (0, Q/kT).
Since usually 6Q/kT < 1, combining equations (13-17)
leads to the nucleation rate:

(17)

. 477';/ ‘ 0,,Q
P= 0, DBé( + ﬁ)(,ﬂmax —p)
‘4y3F ()
« —(L===0 [ as
exp[ ( o T )} It

The exponential factor above is the dominant in-
fluence in the temperature dependence of nucleation;
F,.(2), vy and o, are, therefore, the critical parameters
in determining the nucleation rate. Note that F (a) =
0 if: o =0 at two grain junctions, 0 < 2 < 7/6 at
three grain junctions, and 0 < « < sin™! () at four
grain junctions; at these values of o there is no kinetic
barrier to nucleation. However, F (a) increases
rapidly as o increases bevond these values.

5. TIME TO RUPTURE II: CONTINUOUS
NUCLEATION, NO GRAIN-BOUNDARY
SLIDING

The compound problem of nucleation and growth
of voids is solved by combining equation (11) with (18)
since p, the void density, now becomes time-dependent.
The new equation for ¢, is:

05 — 32 7 QDpd  Fi¥x)
3 KT 7 F.x)
1y [tr
f f 2 — Xy OO F(A — YY) ddY. (19)
0 JYT
+ This probability is the number of periferal atom sites

27rpod/3/€) times the probability D,/0%/3 that one jumps
away from the void. The factor ed, /X7 allows for the change
in vacancy conecentration caused by the stress. In obtaining
equation (17), we have approximated 7, by r. = 2y/a,.
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The numerical procedure for solving for ¢, in the above
equation is described in Appendix I11.

In this section we consider the case where the normal
stress in the boundary which causes nucleation, o,
(equation 18), is equal to the applied stress, ¢,; no
stress concentration occurs in the boundary as a result
of grain boundary sliding, or as a result of a slip within
a grain being obstructed by a boundary.

As an example, consider a copper polyecrystal with
a grain size of 10 um, strained at a constant strain-rate
of 10—4/sec. At high temperatures, the polycrystal
will flow predominantly by power-law creep, or (very
close to its melting point) by diffusional flow. At
lower temperatures its flow is predominantly by the
glide motion of dislocations. The stress required for
flow at a constant rate depends on the way in which
the kinetics of the dominant mechanism depend on
temperature, and thus varies in a complicated way
with temperature. Its behaviour has been described,
compared with experiment, and presented in deforma-
tion-mechanism diagrams, in earlier publications;11.12
the stress required to maintain a strain-rate of 10—4/sec
in a copper polycrystal was calculated by the method,
and using the data, given in thesereferences. Theresult
is shown in Fig. 6. This relationship between stressand
temperature has been used to calculate the time-to-
rupture for the five possible configurations. These
time-to-rupture curves are shown in Figs. 7. All are
calculated for a strain-rate of 10~4/sec, a grain size of
10 pm, and an inclusion density of 101%/m?.

The important features of these curves are:

(a) Ductility minimum
All curves show a minimum time-to-fracture at an
intermediate temperature. This is because the rate of

fracture is proportional to the product of the nuclea-
tion-rate and the growth-rate of the voids. As the
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Fi6. 6. Variation of stress with temperature when a poly-
crystal of copper of grain size 10 pm is strained at 10-4/sec.
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temperature increases, the stress required to maintain
a given strain-rate falls in such a way that the growth
rate increases, but the nucleation rate decreases. At
low temperatures nucleation occurs readily, but the
growth rate is small and determines the rupture life,
whereas at high temperatures growth is fast and it is
the nucleation rate that is small, and determines the
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Fre. 7(d). Void nucleation and growth at inclusions for
Type B voids with no sliding.

life. This results in a minimum value for ¢, at an inter-
mediate temperature. At temperatures above 0.77 y;
nucleation often ceases completely, which precludes
intergranular fracture. Note that the minimum moves
to a lower temperature as o increases. The very sharp
minimum is partly due to our assumption of a unique,
uniform grain.size, and nucleus distribution, so that
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all grains cavitate simultaneously and to the same
extent. Any spread in these quantities broadens the
minimum.

(b) Nucleation rate

When no grain boundary sliding is allowed. as in
the present case, then, in general, nucleation is con-
tinuous with time i.e., the number of nuclei increases
with time towards the number p, . ..

(c) Sensitivity to o

oo by its definition in equation (1) is the primary
measure of the surface energy barrier to void nuclea-
tion. At two-grain junctions, for instance, the energyv
barrier to nucleation vanishes as a goes to zero. but
grows, causing the nucleation rate to decrease rapidly,
as x increases from 6 to 14° (Fig. 7a). For three- and
four-grain junctions there is no barrier to nucleation
when o« = 30 and 36° respectively. A slight increase
in « above these limits causes a rapid change in nuclea-
tion rate as shown in Fig. 7(b) nucleation ceases when

= 37°. Since for a pure metal, o &~ 75°, no nuclea-
tion will occur unless inclusions are present in the
boundaries.

(d) Type 4 and type B voids

For Type A voids at inclusions the angle § (Fig. 2)
is the important surface energy parameter. Fracture
is possible for § < 20° as shown in Fig. 7(c). The
parameter (o - f — u) as described in Fig. 2 and
Section 1 is a measure of the surface energy barrier
for Type B voids forming at inclusions. As shown in
Fig. 7(d) fracture is possible if (ax - f — u) < 24°,
In general, Tyvpe B nucleation sites will be favored
when u << 2, i.e. when y;5 <y (by consideration of
equations (1 and 5).

6. TIME TO RUPTURE III: CONTINUOUS
NUCLEATION, WITH SLIDING

6.1 Stress concentration at inclusions due to sliding
Sliding across an inclusion in a grain boundary must
be accommodated.®!® If the sliding displacements
are too large to be accommodated elastically, then
accommodation must be by diffusional flow or plastic
flow (Fig. 8). The upper bound for the steady-state
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7 b SLIDING
matter =7 RATE
ATT
TRANSPORT INCLUSION

Fia. 8. Shding across an inclusion must be accommodated
by transport of matter,
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stress] that can be maintained at an inclusion during
creep is that required to drive the diffusive fluxes,
either by lattice or by boundary diffusion, which will
accommodate the incompatibility which appears there.
Following a procedure described earlier®! the normal
traction at the interface, g,, can be calculated for an
imposed sliding rate U at the boundary; typically its
magnitude is (Ref. 9, Appendix B)

kT

v, = py
1.6Q

56D
D1+ B)
t( pD, |
where p is the diameter of an inclusion. For a strain

rate of ¢ and a grain size of d, the maximum possible
sliding rate is

, (20)

T=céd (21)

Substituting this into equation (20) gives the upper
bound for ¢,.

The time to fracture curves shown in Figs. 9(a and b)
were evaluated by using this estimate of ¢, in equation
(18 and 19).

6.2 Fracture curves for type A and type B voids

Fracture curves for Type A are given in Fig. 9(a) and
for Tvpe B voids in Fig. 9(b). Fracture is now possible

TEMPERATURE "¢y
20 100 300 500 700
10 T Y T T | S |
t -
g 10" — —
3 o 50° -
(<3 - =
(%)
w L -
@
100 :_ 40° -
w - 20° -
g L 10° -
o - -
-
E T B
10° = —
2 [ )
w r AT INCLUSIONS ]
§ r_ (TYPE A) T
) |
L 10¢ ¢cM™? .
~ WITH SLIDINE b
-5 i 1 J H 1 l
02 03 04 05 0.6 o7 08

TEMPERATURE Ck/TY)

Fic. 9(a). Void nucleation and growth at inclusion for
Type A voids with sliding.

t On initial loading, or when the stress is suddenly changed.
much larger stresses can appear:31’ these relax to the value
quoted above with a characteristic relaxation time; but during
that time, nucleation may occur.
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for 8 < 40° and for (a + B — u) << 70°. It becomes
easier to nucleate Type B voids than Type A voids.
The ductility minimum is observed in these curves for
the same reasons as before; and, as before, the mini-
mum moves to a lower temperature as the energy
angle isincreased. The nucleation behaviour, however,
is different: instead of continuous nucleation we now
get catastrophic nucleation: full nucleation occurs
early in the fracture process. There are two reasons
for this: first the maximum number of nucleation
sites (equal to the number of inclusions) is fewer; and
second, ¢, varies more rapidly with temperature than
o, (at a constant strain-rate).

The value of the parameters used in the generation
of Figs. 9(a and b) were: inclusion size 1 um, grain
size 10 um, inclusion density 10'°/m?, and strain-rate
10—4/sec.

6.3 Sensitivity of fracture curves to different parameters

Figures 10-14 demonstrate the sensitivity of the
fracture curves to strain rate, grain size, particle size,
particle density and the distribution of particles. All
curves were plotted for « +~ 8 — u = 40° (except in
Tig. 10 where « -+ # — u = 20°) and for « = 35°, and
(except where otherwise noted) a strain-rate of 10—%/
sec, a grain size of 10 ym, an inclusion density of
10°/m? and an inclusion size of 1 um. Stress con-
centration due to sliding was taken into account and
Type B void nucleation was considered. The relative
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aspects of the results would have remained the same
if a different set of conditions had been chosen.

(i) Strain-rate (Fig. 10). As strain rate decreases
the minimum moves to a lower temperature and to a
higher value for time-to-fracture. For example, at a
strain rate of 10~!/sec the minimum occurs at 0.58 T ,,
and the time-to-fracture is £.3 X 10¢sec; at 107 sec
the values are 0.447 ,, and 1.6 x 108 sec.
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F16. 10. The influence of strain rate on ductility. a« =
p — u = 20°, Type B voids.

(if) Grain size (Fig. 11). A smaller grain size im-
proves ductility; it moves the minimum to a lower
temperature and a higher value of time-to-fracture.
For example, for a grain size of 10 um the minimum
occurs at 0.52 Ty, and the time-to-fracture is 1.2 >
10% sec whereas for a grain size of 100 um the values are
0.627 ;; and 2.4 x 10*sec. These conclusions are in
qualitative agreement with published experimental
work.(ld.lﬂ

(iii) Inclusion size (Fig. 12). A smaller particle size
improves ductility. For example for a particle size of
1 um the minimum occurs at 0.527 ,, and the time-
to-fracture is 1.2 X 105 sec whereas for a particle size
of 0.1 um the values are 0.47 ;; and 1.2 X 107 sec.

(iv) Inclusion density (Fig. 13). As expected from
equation (11) the time-to-rupture varies inversely as
the three-halves power of the number of inclusions per
unit area in the grain boundary.

(v) Distribution of the second phase (Fig. 14). Frac-
ture curves are shown when the distribution of the
second phase in the grain boundary changes although
its total volume fraction remains constant. A larger
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particle size moves the minimum to a higher tempera-
ture but also raises it to a higher value of time-to-
fracture. For large particles the minimum occurs at
0.6T 4, and 3.4 X 104 sec while for the small particles
it occurs at 0.447 ;;, and 1.6 x 103 sec.

6.4 The role of interface energies

It has been shown that the nucleation of voids is
sensitive to the energy angle § for Type 4 voids and to

INTERGRANULAR FRACTURE AT ELEVATED TEMPERATURE 661

TEMPERATURE (C)
o 100 300 500 700
10 T T | SR T T
- -
i __1
[~} -4
2 -
o - 4
W - -
@
10'0 — -10¢ cm® -
W - -7
g [ ]
§ - | —10¢ cm? -
[+ 4 P -
“0® - —
o L i
- - 10® cm? .
Yy L ]
= T —
L INCLUSION i
L DENSITY 7
0% C A 1 1 | 1 N
0.2 03 04 05 06 07 08
TEMPERATURE ('K/T“)

Fi6. 13. The influence of inclusion density on ductility.
p = 10~¢m. Type B voids.

TEMPERATURE (°c)
20 100 300 500 700
10 T T T
| __PARTICLE |
IR . SIZE
e = -
8 - p
Lt p- \
2 L 2.4x10% cM 1
lOIO F— . —
t 10 ez
4 - ‘ 4
=]
=4 L 4
2 / PARTICLE -
T [-_ DENSITY  __|
ok ]
- b -
L
v [ ]
2, CONSTANT VOLUME _|
FRACTION OF
il SECOND PHASE ]
lo‘S e 1 i H 1
0.2 0.3 04 0.5 06 0.7 08

TEMPERATURE (°K/Ty)

Fi6. 14. The influence of the dispersion of second with
the total volume of the second phase remaining constant.
Type B voids.

(¢ + p — p) for Type B voids. The dependence of
these angles on interface energies has been described
in Section 2. Four interfacial energies are involved:
y and y;. the matrix free surface and the inculusion free
surface energv; and yg and y;p, the grain boundary
interface and the inclusion-matrix interface energy. As
an example, consider the case of grain boundaries in
copper containing silica inclusions. The interface ener-
gies are approximatelyv: y = 1.14 J/m?, »; = 0.5
J/m? 5= 0.556 J/m22® The angles o, § and u
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copper polycrystal containing silica inclusions. Void

nucleation is possible for 8 < 40° {Type A voids) and for
2+ f — pu < 60° (Type B voids).

are given in Fig. 15 for various values of vp.
From consideration of results in this section we
conclude that nucleation of Type A voids is possible
for 5 < 40° or for y;p < 1.37 J/m®* Nucleation of
Type B voids is possible for (x + § — pu) < 60° or for
yig < 1.07 J/m2. These limits are good only for the
set of creep conditions specified in this paper. The
limits for other cases can be calculated.

7. SUMMARY AND DISCUSSION

The kinetics of stress induced nucleation and growth
voids in a grain boundary has been analysed in detail.
Particular attention has been given to voids forming at
second phase particles since these appear to be the
prime sites for nucleation in the grain boundary. The
cogent results are:

(a) Three types of void configuration in clean bound-
aries and two types of configurations at second phase
particles are possible. The geometrical properties of
all the configurations can be described by similar
general functions. General solutions for the nucleation
and growth of these voids are therefore possible.

{b) An expression for time-to-fracture has been
derived for growth by boundary diffusion when the
number of voids remains constant. The results are
extrapolated to include growth by volume diffusion.
The early stage of void growth is the slowest and ac-
counts for most of the time-to-fracture.

(e) Using classical nucleation theory, the nucleation
of the voids has been calculated. The energy barrier
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for nucleation is a sensitive function of the free surface
energy and of the volume of the void of critical radius.

{d) A numerical procedure has been developed which
gives the time-to-fracture when nucleation and growth
occur continuously and simultaneously.

(e) The time-to-rupture curves have been obtained
for the case when a polyerystal is deformed at a con-
stant strain-rate at different temperatures. When no
sliding of the boundaries is allowed then void nuclea-
tion is possible only when interface energies are com-
parable to the total surface energy of the void being
created. These conditions may be met at non-wetting
or almost non-wetting inclusions.

(f) Stress concentrations are produced when sliding
oceurs in a boundary which contains inclusions. Upper
bounds for these stresses are calculated and new time-
to-fracture curves are obtained. Inclusions now be-
come probable nucleation sites. Quantitative results
are derived in terms of all the surface energies involved
in the nucleation process.

{g) The time-to-fracture vs temperature curves show
a minimum duectility at approximately 0.57 ;. This
is in agreement with the published experimental
work.(2:3.17)

(h) The time-to-fracture curves shift with change
in strain-rate, grain size, inclusion size, inclusion den-
sity and the distribution of the second phase. For
results see Figs. 10-14.

(1) When no sliding is allowed the number of nuclei
increase continuously with time but when stress con-
centrations due to sliding are taken into account then
nucleation is catastrophic i.e. full nucleation occurs in
the early stages of creep. Experimental work in sup-
port of the first*1® a5 well as the second process(®19 iy
found in the literature.

{j) The results are applied to a copper polycrystal
of grain size 10 um being strained at 10— sec and con-
taining silica inclusion of size 1 um dispersed at a den-
sity of 101%/m? in the boundaries.
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NOMENCLATURE

surface free energy per unit area of the matrix
material

interface free energy per unit area of the matrix
grain boundary

surface free energy of the inclusion

interface free energy of the inclusion—matrix
boundary

total volume of the void

total surface area of the void

area of the grain boundary which the void oc-
cupies

a function of energy angles which provides the
void volume (equation 3a) _

a function of energy angles which provides the
void surface area (equation 3c)

a function of energy angles which provides the
area. B (equation 3c)

energv angle as defined by equation (1)
energy angle as defined by equation (4) (also a
constant in the calculation of appendix II)
energy angle as defined by equation (5)

grain boundary self-diffusion coefficient—its
value for copper: 10-%exp (—24.8 keal/mole/
RT) m?sec

lattice self-diffusion coefficient—its value for
copper: 6.2 x 105 exp (—49.6 keal/mole/
RT) m?/sec

boundary thickness—its value: 4 x 10-¥%m

radius of curvature of the void surface

g radius of eurvature of the projection of the void
in the grain boundary

2l average spacing between the voids

A a fractional measure of the grain boundary area
occupied by voids, defined by equation (10)

Q atomic volume—for copper: 1.1 x 102 3

Oy external applied stress

g, local normal stress at the interface which is
responsible for void nucleation

E Young's modulus—for copper: 12.7 x 104 MN/
m?

G shear modulus—for copper: 4.2 x 10* MN/m?

7, critical radius for void nucleation

AG, free energy barrier to void nucleation

p void density of the number of voids per unit

area in the grain boundaryv
Pmex Maximum number of possible nucleation sites
per unit area
Pe number of critical nuclei per unit area
Po number of inclusions per unit area of boundary
v, time dependent probability of adding one
vacancy to a nucleus of critical size
nucleation rate of voids per unit area
time to fracture in sec
strain rate
grain size

diameter of the inclusion
.  hormal tractions in the grain boundary which

cause growth

Ap  the excess chemical potential of the atoms in
the boundary relative to the stress free state

Jp  boundary flux of atoms

B net number of atoms leaving per unit volume
of the grain boundary during the steady state
growth of voids.

P
tT
>
d
C average sliding rate of a grain boundary
D
T

APPENDIX 1
(a) Properties of voids in inclusion free boundaries

The F(a) functions in equation (2) for the three and
four grain junctions are as follows (8).

Three grain junctions
F o) = -[Tr — 2sin™! (§ esc &)
+ } cos® a(4 sin®* o — 1)'2

— cos™ (COF_G) cos a(3 — cos® oc):‘ (Al.1)
\'3

and
F () — 2 cos aF/a) = 3F (). (AL2)
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Four grain junctions

1 V2 —cosa- (3 — Az)l/’]

Asina

F =8 T _ cos
2) [3

4+ A cos af(4sin®x — A}V — 4% /2]

. A
— 4 cos a3 — cos?a)sin~! ( - ),
2gina

where

A = 3[V2(4sina — 1)2 — cos a], (AL3)
and where equation (Al.2) still connects the different
F functions.

(b) Exact expression for volume of a type B void

The volume of the region shown in Fig. Al is given
by the following expression:

V =21, + L),

where

L
I, =f {(1 — %) cos™! -z _
sin (y—x)

V1 — 22

-Z\/l —xz—zz\dx,

J

and
sin 8
1, =f (1 — 2% cos™! — B
L V1 —2f
— cos Bv/sin® B — x2> dx, (Al4)
where
[ _ tosa —'cosﬂcosy
sin u
and
7 o S8 — xsin‘u.
cos
The integral was evaluated numerically.
VvoIiD
73

BOUNDARY

RADIUS = A
Fie. Al. Evaluation of volume of a Type B void.
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APPENDIX II
Time-to- Fracture: Fixed Number of Nuclei

(a) Steady state void growth rate

Let 7,(R) be the normal tractions in the grain
boundary in Fig. 3. The excess chemical potential of
atoms in the boundary relative to the stress free state

is(20
Ap = —T Q. (A2.1)
The transport equation for boundary diffusion is:
Dg
= — == A2.2
B kT (Ap) (A2.2)

The steady-state condition is that all parts of the
boundary must give up or add the same amount of
material, i.e.

V * JB = ﬁ, (A23)

where § is a constant and is equal to the number of
atoms removed per unit volume of the boundary

which is thought of as having a thickness 6. These
equations lead to the differential equation
VH(Ap) = — pETQ (A2.4)
B

which must be solved (in polar coordinates with cir-
cular symmetry) subject to the boundary conditions:

-?-éﬁ =0, at R=1, (A2.5a)
oR
and
2
su= -2 at Rery  (A25D)
r
The answer is:
- ﬂkTQ (R2 _ ,,B‘.l)
LT Q12 2
L s B L e
2DB R r

The condition of mechanical equilibrium requires

that: .

wl’a =f T.R2nR dR. (A2.7)

]

Substituting equations (A2.1 and A2.6) in (A2.7) gives
an expression for §. Since the growth rate of the void
is equal to the amount of material added in the grain
boundary, we have:

av rgt

adY! m(l --B—).
dt pom 1?

Substitution of B leads to the final result given in
equation (8).



RAJ axp ASHBY:

(b) Calculation of time-to-fracture
TUsing the definition for 4(¢) given in equation (10)

and recalling from equations (2) that

2
rgt = T;FB(ac) {A2.9a)

and
V = rFp(a), (A2.10a)

equation (8) can be re-written in the following form:

14 32 QDyZo . Fz®
S B, 2P iEg(4). (A21D)
dt 3ym kT F ()
where
1— 4
f(-‘l) = L‘“"‘__'—)
A
1 — (e T —
RPN L i1} E VP
ilog. 1/4 — § -+ A(1 — 4/4)
Here r, is the critical radius given by:
2
re = a (A2.13)
Goc

and p is the number of voids per unit area of the bound-
arv: p = 1/{20)%. Equation {A2.11) leads to an ex-
pression for time to fracture, ¢_:

1:3\77 kT 1

r

Ama:
Fol() f A4 ey

32 QDgd 0, p*2 F¥(a) Ly, f(A4)

The integral in equation (A2.14) has been evaluated
where the voids start to grow from critical size (A2.13).
Its value, for r, = 100 A%, and for a variable upper
limit. is shown in Fig. A2, It is evident that the early
stages of void growth are the slowest. The integral
becomes relatively insensitive to A4, after 4., >
0.1. In all computations in this paper we assume
4,05 = 0.5 for which the integral is equal to 0.06.

The integral is also insensitive to the value of 4
defined by:

min?

r*F pla)p
—

4 =

A (A2.15)
This can be seen from Fig. A2, in which a variation of
p tand thus of 4_;) by a factor of 10® makes little
difference to the value of the integral.
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APPENDIX III

Nucleation and Growth of Voids: A Computer Model

A computer model was developed to simulate the
continuous nucleation and growth of voids in the
grain boundary. Simultaneous nucleation and growth
was assumed to oceur at a constant rate during small,
but disereet, time intervals At, where the subscript
determines the sequence of the time intervals. The
radius of a void, r;;, in the jth period depends upon the
ith period during which it was born. The number of
nuclei of radius »,;, Ap, will be given by :

Ap; = p; B, (A3.1)

where g, is given by equation (18). When all the nuclea-
tion sites, pn.x, have been exhausted, the nucleation
rate goes to zero. New nuclei are assigned the critical
radius (equation A2.13).

The computer simulation operates using equations
(8 and 2). At every time step the fractional grain
boundary interface which has been replaced by voids
is calculated according to:

A= Apr2Fpia). (A3.2)

The value of j, for which 4; > 0.5, is determined
and the time to fracture is then equal to z,f.,l At If
the value of j is less than 25, At is decreased until
J > 25. Increasing the minimum value of 3’ from
25 to 50 increased the accuracy by only 10 per cent
whereas the computer time needed for the calculation
increased logarthmically.

At two-, three- and four-grain junctions, p,.. was
set equal to

1 1
(FEFgpla))  (FAF%3a))

; and

Qa|lo
123
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respectively. Here d is the grain size, and #, is the
radius of a nucleus equal to the volume sum of the
critical nucleus plus one atomic volume.

Pmax Was taken to be equal to (pp,/b?) when in-
clusions were present, p is the inclusion size and p,
the inclusion density in the grain boundary. However,
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for inclusions, all the nucleation sites were considered
to be exhausted when the total number of nuclei was
equal to the number of inclusions. The stress in
equation (18) was assigned an upperbound value of
2.0 x 10® MN/m? which was assumed to be the ideal
fracture strength of the interface.



